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Abstract
The structure of a polymer nanodroplet adsorbed on a flat lyophobic substrate
chemically decorated with a lyophilic stripe of width 2RD is studied by
molecular dynamics simulation of a coarse-grained bead–spring model of short
macromolecules (containing N = 20 effective monomers). Varying the stripe
width, the strength of the monomer–wall attraction and the temperature, the
equilibrium morphology of the resulting droplets is studied and discussed in
terms of current phenomenological theories.

In the second part, the behaviour of a liquid bridge connecting two such
lyophilic stripes a distance L apart is analysed. It is shown that for large
enough L such free-standing films are unstable and rupture, after a hole has
nucleated and grown into an elongated cavity in the lateral direction leaving
only a cylindrical bridge between the stripes immediately before break-up. The
forces acting between the two walls of the slit pore in equilibrium due to the
thin film forming the liquid bridge are also estimated as a function of distance
between the walls.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Gaining control of wetting behaviour by using chemically patterned substrates is expected
to become a useful technique for various applications. Chemically structured surfaces with
lateral patterns of varying wettability can be produced, for instance, by photolithography[1, 2],
microcontact printing [3–5], vapour deposition through grids [6], domain formation in
Langmuir–Blodgett monolayers [7, 8], electrophoretic colloid assembly [9], lithography with
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colloid monolayers [10] and microphase separation in diblock copolymer films [11]. Various
theoretical considerations [12–21] have predicted very interesting droplet morphologies on
such substrates, including also so-called ‘morphologicalwetting transitions’ [12, 16, 17]. Most
of this work relies on ‘macroscopic’ theories, i.e. the free energy of a fluid droplet is described
by a bulk term proportional to its volume and various surface terms describing the free energy
contributions due to the liquid–vapour interface and the liquid–substrate interface(s), or the
contact angle, respectively [22–24]. Sometimes a line tension term [25–34] proportional to
the length of the three-phase contact line between liquid–vapour and substrate is also included.
These macroscopic theories are indeed very useful for the understanding of various phenomena
in microfluidics, but one must expect limitations of such theories on the nanoscale [21]. For
example, the concepts of a contact line and a contact angle have to be revised, since a sharp
contact line is expected to be replaced by a smooth transition from a mesoscopic wetting film
to a precursor film which is comparable in thickness to atomic dimensions [34–38]. Also even
an atomically sharp boundary between lyophilic and lyophobic areas on the substrate will lead
to a smooth lateral variation of the effective interaction potential between the liquid particles
and the substrate [35].

A more microscopic description better adapted to such phenomena on the nanoscale is
provided by density functional theories [21, 33–39], which are a successful approach to address
the static structure on scales intermediate between the macroscopic and the atomistic scales.
However, it is the particular merit of molecular dynamics computer simulations [40] that they
not only can fully cover phenomena from the atomistic scale to the nanoscale, taking also full
account of statistical fluctuations, which are partially ignored in the approaches mentioned
above, but also contain important information on the dynamics of the studied model systems.
The present technological drive towards nanotechnology, including nanofluidics such as the
transport process to and from ‘nanoreactors’, creates increasing interest in such phenomena.

With this motivation we have recently studied a polymer nanodroplet adsorbed on a circular
lyophilic domain on an otherwise lyophobic surface [41]. In the present paper, we treat the
related case of nanoscopic polymer droplets adsorbed on a lyophilic stripe (rather than a circular
domain). Also the morphology and rupture kinetics of liquid films bridging between two such
lyophilic domains in a slit pore of width L will be considered. Whenever possible, we shall
make contact with the concepts derived from the related macroscopic theories [12–20] to test
their applicability on the nanoscale.

2. Model and simulation technique

Since the phenomena under study require both the consideration of rather large length scales
(in the order of up to 100 nm) and related large timescales, it is advisable to consider a coarse-
grained model, rather than an atomistic model containing full chemical detail on a particular
system [40, 42]. There is ample evidence that the generic properties of melts of flexible
polymers can be captured by simple bead–spring models, where each bead may represent
a few chemical monomers along the chain backbone [42–46]. Such models take account
of chain connectivity and excluded volume interactions between the effective segments, and
an attractive interaction between them is also included, which drives the phase separation
between the polymer liquid and the gas. Note that, unlike small molecule fluids, the density
of polymers in the gas phase can be taken as strictly zero for typical circumstances, and this
fact greatly facilitates the simulations (and offsets the disadvantage that density fluctuations
relax considerably more slowly in a polymeric liquid rather than a small molecule liquid).
Following [44–46] we describe the interactions between the beads modelling the effective
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monomeric units by a truncated and shifted Lennard-Jones (LJ) potential,

ULJ(r) = 4ε[(σ/r)12 − (σ/r)6] + 127/4096, r < 2 × 21/6σ. (1)

Here ε describes the strength and σ the range of the LJ potential. It is cut off at twice the
minimum distance and shifted so as to produce a continuous potential at this cut-off distance.
In addition, monomers along the chain also interact with a finitely extensible nonlinear elastic
(FENE) potential,

UFENE(r) = −15ε(R0/σ)2 ln(1 − r2/R2
0), R0 = 1.5σ. (2)

The choice of these parameters ensures that the minimum of the total potential between two
bonded monomers along the chain occurs for r ≈ 0.96σ , while the minimum of the LJ potential
between non-bonded monomers occurs for r = 21/6σ ≈ 1.126, of course. The misfit between
these two distances ensures that no crystallization occurs there, on timescales accessible by
MD, and rather at low temperatures (T/ε ≈ 0.4) a glass transition of dense melts is found in the
bulk [44, 45]. Henceforth we shall measure all lengths in units of σ and all energies (including
the temperature, choosing kB = 1) in units of ε. The chain length is chosen as N = 20
throughout. Since the Theta-temperature of this model (i.e., the limit of the gas–liquid critical
temperatures for N → ∞) is known to occur for about T0 ≈ 3.1, it is possible to work in
a temperature range 0.6 � T � 1.0 where the system is not yet slowed down by the glass
transition but nevertheless the density of the monomers in the gas is still indistinguishable
from zero. In this respect, a somewhat wider range of temperatures is accessible with the
present model rather than with the related model [41–43] that was used in our previous work
on droplets on circular lyophilic domains [41]. In addition, the present model allows us to use
a somewhat larger molecular dynamics (MD) time step, namely δt = 0.005 MD time units
rather than [41] δt = 0.0009 MD time units, and hence no efficiency is lost in spite of the
larger range of the present potential.

The adsorbing walls are treated as perfectly flat and structureless; in particular, no atomic
corrugation of the walls is considered. The interactions between the effective monomers and
the walls are represented by a Lennard-Jones potential that is integrated over a semi-infinite
substrate

Uwall(�z) = εw[(σwall/�z)9 − (σwall/�z)3], (3)

�z being the distance from the substrate. We choose parameters σwall = 1, εw = 0.05 in the
lyophobic part. Thus, we ignore the effect that Uwall(�z) should be smooth at the boundary
between lyophobic and lyophilic regions [35] and that for a lyophilic strip of finite width a
faster decay than described by equation (3) is expected.

Typically the size of the simulation box is chosen to be Lx × L y × Lz = 64 × 76 × 40,
the lyophobic substrate being at z = −20. The lyophilic area is modelled as a band along the
whole distance L y which has a width 2RD , with 3 � RD � 18. The total number of chains
in the polymer droplet is chosen as N = 512 (for a sessile droplet) and N = 1024 (for a
bridging droplet). Periodic boundary conditions are implemented in the x and y directions, so
the droplet (which often is rather elongated in the y-direction) can interact with its periodic
images in that direction and in the extreme case it can form a continuous liquid stripe in that
direction. Since we put the droplet in the middle of the lyophilic area, so its x-coordinate is
−RD � x � RD , the periodic boundary condition in the x-direction only has the effect that
chains that evaporate from the droplet (this occasionally happens for temperatures T > 1) and
leave the box in the x-direction will re-enter from the −x side, and vice versa. The top wall
of the box, at z = 20, is taken to be purely repulsive (if a monomer reaches this wall then the
monomer velocity changes its sign, thus preventing chains from leaving the simulation box).
If we wish to simulate liquid bridges, the same potential equation (3) is applied at both walls.
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Our simulations are run at temperatures from T = 0.6 (where the number density in the
liquid phase at zero pressure is φ ≈ 0.9) up to T = 1.4 (where φ = 0.6). While at T < 1.1
there is no evaporation occurring and the gas density is zero, to a very good approximation,
already at T � 1.1 some evaporation events of chains from the interface of the model were
observed. For T � 1.4 the droplet is found to be rather unstable; many chains can evaporate.

For our study of slit pores, we use distances L between the walls in the range 8 � L � 52.
The initial preparation of droplets in equilibrium is done by Monte Carlo methods, as described
elsewhere [41]. MD runs are performed applying the standard velocity Verlet algorithm [40]
and the temperature is kept constant via the Langevin thermostat [40], which provides a very
good stability of the algorithm. The coordinate of each monomer then changes according to

m �̈r i = �Fi − ξ(�z)�̇r i + Wi (t), (4)

where m = 1 is the mass of an effective monomer and �Fi is the force deriving from all the
potentials

�Fi = −
∑

j ( �=i)

∂Ui j/∂�ri , Ui j = U LJ
i j + U FENE

i j + U wall
i j . (5)

�Wi (t) is a Gaussian white noise term,

〈 �Wi (t) · �W j (t
′)〉 = 6T mξδi jδ(t − t ′). (6)

Note that we use the thermostat near the wall only,

ξ(�z) = ξ∗ exp(σ − �z), ξ∗ = 15, (7)

motivated by the idea that physically equilibration is achieved via heat transport to and from
the wall. Typically one run is over 1.1 million integration time steps.

3. Polymer nanodroplets on stripe-like domains

In their pioneering study on wetting morphologies on substrates with striped surface domains,
Brinkmann and Lipowsky [18] proposed to use the contact angle of the lyophilic domain �phil

and the reduced volume of the liquid phase q = V/(2RD)3 as the basic control parameters
(while the contact angle of the lyophobic domain was typically put at its limiting value
�phob = π , and line tension effects were neglected). Brinkmann and Lipowsky [18] consider
four morphologies: (I) small spherical cap (for small enough q); (II) extended channel (for
large q but large enough �phil); (III) droplike state with contact line pinned to the boundary
of the surface stripe (for large q and sufficiently small �phil); (IV) droplike state with contact
line depinned from the boundary of the surface stripe (for large q and sufficiently small �phil

but �phob < π). Studying the stability of states I, II, and III for �phob = π in the framework
of their ‘macroscopic theory’, Brinkmann and Lipowsky [18] find that the change from I to
III is a discontinuous transition along a line in the plane (q , �phil). This line (as well as the
associated limits of metastability) ends in a kind of critical point at qcrit ≈ 2.85,�crit

phil ≈ 39.2.

For �phil > �crit
phil, one encounters only a smooth change from state I to state III.

Turning now to our simulations, it is straightforward to vary the parameter q simply by
suitably changing the stripe width 2RD . It is a nontrivial issue to ensure that the contact
angle �phil occurs in the range of interest. We can vary �phil by either changing the strength
of the substrate potential εw, equation (3), or by changing the temperature T ; note that
the liquid–gas surface tension γ�g of the polymer melt shows a rather strong decrease with
increasing temperature (it vanishes at the gas–liquid transition temperature Tc(N)), while the
polymer–substrate surface tension γ�w is approximately proportional to εw since in the regime
of interest the polymer density in the gas phase is negligibly small, the corresponding surface
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Figure 1. Cosine of the contact angle of a polymer droplet containing Nch = 512 chains of length
N = 20 on a uniform flat substrate at which the wall potential, specified by equation (3), acts,
plotted versus εw at T = 1.0 (full circles). Triangles show corresponding data plotted versus
T (T = 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, from left to right) at εw = 3. In the shaded
region the substrate is wet. Insets show for two typical cases the contour diagrams that describe
the density profiles of the droplets. For further explanations cf text.

tension γgw vanishes, and hence the Young equation for the contact angle [22] simply reads
γ�g cos � = γ�w − γgw = γ�w. Thus we expect that at constant γ�g (i.e. constant temperature)
the cosine of the contact angle varies roughly linearly with εw. Figure 1 shows MD results
that confirm our expectation. Following previous studies of a related model [47], polymer
droplets are prepared on a uniform surface (without a stripe domain) with a chosen value of εw

in equation (3) and equilibrated to record the density distribution ρ(r, z) of the droplet, where
the z-axis is chosen perpendicular to the substrate surface through the centre of mass of the
droplet, and r is a radial coordinate measured from this axis. The insets in figure 1 show typical
examples of such density distributions, showing contours ρ(r, z) = 0.05, 0.1, 0.2, . . . , 0.9 as
indicated. The midpoint contour ρ(r, z) = 0.4 is used to estimate the contact angle � by
fitting a straight line to this contour in the region 2 � z � 4. Of course, due to the smallness
of the droplet there is no straight line portion present in the contours ρ(r, z) = constant at
all, rather some curvature is inevitably present, and thus only tentative estimates of cos �

can be obtained, subject to some systematic error. An alternative method would be [47] the
estimation of γ�w, γ�g for a flat ultrathin film with horizontal interfaces, using then the Young
equation to obtain cos �. However, on the nanoscale one must expect substantial deviations
from the Young equation due to line tension effects [47, 48] and thus it is not clear that this
method should be preferred. It is also clear that for small droplets the transition from nonwet
to wet surfaces (cos � → 1) is somewhat rounded, but it is plausible to assume that εw = 4.5
refers already to a wet state of the surface, for T = 1.0, while εw = 3.0 corresponds to
cos(�) ≈ 0.35 and hence �phil ≈ 70 or thereabout. Even if one accepts very generous error
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Figure 2. Projections of the density distributions of polymer droplets on lyophilic stripes on
the surface plane, for stripe halfwidths RD = 3, 5, 7, 9, 11, 13, 15, 17, and 20 and the choice
T = 1, εw = 3.0 (a) and for the choice T = 1, εw = 4.5 (b). Curves show contours of constant
density ρ(x, y) = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, and 0.7, as indicated. Droplets contain 512 chains
of length N = 20 throughout, and hence their volume is always the same. Thus for small RD the
height of the droplets in the z-direction normal to the substrate plane (this height is not displayed
here) is much larger than for large RD . Outside of the lyophilic stripe εw = 0.05 which provides
�phob ∼ π and then the contact line always stays pinned to the stripe boundaries.

bars to this estimate, it is clear that for εw = 3.0 we are far above the critical value �crit
phil of

Brinkmann and Lipowsky [18], and hence we expect a gradual transition from a sphere-cap
shaped droplet (state I) for large RD (i.e., small q) to a droplike state with contact line pinned
to the surface domain boundary (state III).

Figure 2 shows that for εw = 3.0 and for large RD (i.e., small q) the droplet indeed has
a spherical shape, whereas when RD decreases, and q hence increases, the droplet shape is
elongated along the stripe axis. The whole droplet stays on the stripe for RD � 15, while
for RD � 13 part of the liquid goes out of the stripe. For RD � 7 it is evident that the part
of the droplet that is not close to the stripe tends to return to a spherical surface, and thus
contours for the different values of density no longer have the same shape: e.g., for RD = 3
the contour ρ(x, y) = 0.7 (this is the innermost contour; in the z-direction it is closest to the
substrate) clearly has a shape close to elliptic shape, while contours for small density have
almost spherical shape. As expected for such small droplets, the change of the droplet shape
with stripe width is not a discontinuous process but a gradual, rounded transition.
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Figure 3. Plot of the half linear dimension (Ry is the droplet radius if their shape is sphere-cap-like)
versus the halfwidth RD of the lyophilic stripes at four temperatures, as indicated in the figure.
The broken horizontal straight lines show the asymptotic values derived from droplets on surfaces
which do not have a lyophobic surface domain at all. Data for a ‘wet’ stripe (with εw = 4.5) are
also included (here no asymptote can be shown due to complete spreading of a droplet on a surface
without lyophobic domain).

For εw = 4.5, where we expect zero contact angle in the thermodynamic limit, we observe
elongated extended channel states for all RD � 11, and the contact line seems to be perfectly
pinned along the surface domain boundaries. For smaller RD , however, a part of the droplet
starts to make excursions into the hydrophobic region, and for RD = 5 and 3, we indeed
have a morphology of an elongated droplet, with a pinned contact line (i.e., type III in the
Brinkmann–Lipowsky [18] classification). Indeed, the transition into a droplet shape from an
elongated cigar for RD = 7 to a deformed ellipsoid for RD = 5 is much more abrupt than
the corresponding changes for εw = 3; probably one can interpret this rather rapid change of
morphology with RD for εw = 4.5 as a remnant of the first order transition from topology II
to topology III or IV, rounded by finite size.

To quantify these observations a bit more we study the dependence of the droplet linear
dimension in the direction of the stripes (the y-direction) as a function of RD , varying the
temperature for εw = 3.0 (figure 3). In all cases the maximum of this non-monotonic variation
of Ry with RD occurs for RD ≈ 10. However, we do not expect that a quantitative comparison
with the macroscopic theory of Brinkmann and Lipowsky [18] would make much sense as line
tension effects, statistical fluctuations, effects due to molecular structure, etc, are all ignored
in their treatment; one cannot expect a quantitative accuracy on the nanoscale. Therefore, it
is rather involved to obtain information such as that shown in figure 3 from this macroscopic
theory, and we have not attempted to do this.

Finally in this section we turn to cylindrical droplets (with twice as many chains,
N = 1024) confined between two walls with lyophilic stripes (of halfwidth RD = 18)
exactly opposite each other, varying their distance L, and studying the relation between the
force versus L curve and the shape of the resulting polymer film bridging between the plates.
For too small a separation the polymers do not fit completely on the lyophilic parts of the
surfaces, and are somewhat squeezed out into the lyophobic part, resulting then in a convex



S4206 J Yaneva et al

0.0075

0.0025

–0.0025

–0.0075

–0.0125

Fz

L

θ* ~ 105°

L=8

L=52

L=50

L=24
L=14

L=34

L=11

5 25 45

Figure 4. Force between two surfaces containing lyophilic stripes of halfwidth RD = 18 exactly
opposite each other, with a polymer film containingN = 1024 chains of length N = 20 adsorbed on
both stripes connecting them, plotted versus their separation L . For some selected cases snapshots
of the film are shown (note that for L = 52 the film has ruptured into two disconnected droplets,
and thus the force ceases to exist). The lyophilic parts of the surfaces are shown in black, lyophobic
parts in grey. All data refer to T = 0.6, every point is obtained by averaging over three independent
runs of 0.5 million MD steps, and εw = 3.0.

(outbound) polymer–gas interface, and a repulsive force (Fs > 0). For L = 11 the polymer
film fits perfectly to the lyophilic stripes, and the polymer–gas interface is perfectly horizontal,
connecting both the upper and the lower contact lines. Here the Fz versus L curve has a rather
steep minimum, corresponding to the strongest attraction (no force occurs when the contact
angle is not 90◦ but roughly 105◦). As L increases further, the forces stay attractive (negative)
while the liquid–gas interfaces of the polymer film become slightly concave (inward bound),
and a smaller and smaller part of the lyophilic stripe is still covered with polymers, until at
L = 52 the film becomes unstable and ruptures, so the system takes states of the type shown
in figure 4. The kinetics of this rupture process of such free-standing thin polymer films
suspended between attractive stripes at walls will be analysed in the next section.

4. Kinetics of thin film rupture

In this section we study the break-up of a thin polymer film which forms a free-standing
liquid bridge between the two lyophilic stripes opposite each other on the otherwise lyophobic
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Figure 5. Snapshot pictures of the time evolution (time is measured in the standard MD time units)
of a thin film between two lyophilic stripes at distance L = 52 from each other in the z-direction,
while in the y-direction periodic boundary conditions are used, for the choice of parameters
T = 0.6, εw = 3.0;N = 1024, N = 20. The left series of pictures shows contours of the local film
thickness in columns of cross sections �y × �z in the x-direction parallel to the walls (that is, the
xy-planes at z = −26 and +26, respectively). The right series of pictures were generated simply
by projecting the y, z-coordinates of each monomer in the film onto one yz-plane. Both columns
on the left show the early time evolution, namely times t = 0.0, 61.44, 122.88, and 184.32, while
the other two columns on the right show the late time evolution (t = 491.52, 1392.64, 2519.04,
and 3379.2, respectively).

surfaces in more detail. Figures 5(a) and (b) present a series of snapshot pictures which attempt
to visualize the kinetics of these phenomena by suitable projections into a plane parallel to the
free surface of the thin film.

Since the gas–liquid interfaces of the thin film are slightly concave, the thickness of the
film is smallest near z = 0. Given the fact that the interfaces must exhibit some thermal
capillary wave-type fluctuations, it then is possible to find a spot near z = 0 and some y-
coordinate where the barrier against nucleation of a hole in the film is so small that a hole is
formed almost immediately after the system is prepared in the considered state. Figure 5(a)
shows that this hole starts out with a cross section close to circular but rather soon develops an
elliptical shape: obviously hole growth is easier near z = 0 in the y-direction rather than close
to the walls with the lyophilic stripes. The area taken by the projection of the hole into the
yz-plane steadily grows, and at times of order t = 1000 the area of the hole starts to exceed
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Figure 6. Hole diameter Dy plotted versus time, for the same parameters as shown in figure 5.
Three equivalent runs are included. Straight lines on the log–log plot illustrate power laws Dy ∝ t
in regime I and Dy ∝ t0.15 in regime II, respectively.

the area still taken by the projection of the liquid film. Actually, at times t � 1500 almost all
monomers are now in elongated domains attached to the two lyophilic stripes, and all that is
left from the thin liquid film spanning the whole distance L = 52 between the two stripes is a
thin liquid bridge, which ruptures in the example shown in figure 5 soon after the last snapshot
shown.

Figure 6 presents the time evolution of the hole diameter of the rupturing film on a log–
log plot. The linear growth of the hole diameter with time, Dy ∝ t , that is observed until
t ≈ 300 MD units, differs markedly from the exponential growth of hole sizes with time in
freely suspended thin viscous films proposed by Debregéas et al [49] and from the growth
laws discussed for spinodal dewetting of supported thin films (see [50] for references). Of
course, the free-standing polymer films whose rupture is considered in the literature [49, 51]
have macroscopic rather than nanoscopic lateral dimensions. During the stage where the
hole in such films grows exponentially with time the thickness of the remaining film stays
constant everywhere. However, in our case the film thickness is distinctly nonuniform, due
to the concave shape of the cross section through the film (cf also figure 4). In fact, we
observe that the film thickness is about W ≈ 10 near the walls but only about W ≈ 5 near
z = L/2. Studying the flow of material in a viscous liquid film with such inhomogeneous
linear dimensions from a hole to the walls is a complicated problem of hydrodynamics that we
are not going to address here. Similarly, in the late stages of hole growth (region II in figure 6)
mass has to be transported from the centre of the liquid bridge (at z = 0) to the regions near
the walls, and there the excess mass contained in the conical ‘feet’ of the liquid bridge has to
spread sideways into the positive or negative y-direction along the elongated liquid channel.
This spreading of liquid material is somewhat reminiscent of the spreading of liquid droplets
on wet substrates (see [52, 53] for references).
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Figure 7. Time evolution of the mid-height film thickness W , for the same set of parameters as in
figure 5. At three times characteristic cross-sections of the film at z = L/2 in x, y-directions are
included. Three equivalent runs are shown.

A further interesting observation concerns the time evolution of the film thickness W at
the mid-height (i.e., z = L/2) of the film. This quantity is fluctuating around a constant
(z ≈ 3.5) as long as hole nucleation has not yet started (negative times in figure 7: in each run
we choose t = 0 at the time where hole formation starts). When hole formation has started,
the film thickness grows, so the mass from the growing hole stays first at z = L/2 (at least
to a large extent), leading to a thickening of the remaining film. When the liquid bridge has
transformed its elliptical cross section into a circular cross section (at about t = 103), the
maximum thickness of about W (z = L/2) = 8.5 is reached (figure 7). Then the thickness
decreases until at W (z = L/2) ≈ 1 the final rupture occurs. Note that in this final stage there
is a considerable fluctuation from run to run, unlike the earlier stages. We also note that the
crossover characterized by the maximum of W (z = L/2) does correspond to the crossover
in the growth law for the hole diameter (figure 6). It hence remains a challenge to theory to
correlate all these observations from simulation.

5. Conclusions

Motivated by the work of Lipowsky et al [12–20], we have studied in the present work
nanoscopic fluid droplets both on isolated lyophilic stripes on otherwise lyophobic substrates,
and ultrathin polymer films held between two such stripes on surfaces a small distance L apart.
Unlike the macroscopic theory [12–20] which neglects statistical fluctuations due to its mean-
field type character, but which also disregards line tension contributions as well as any effects
on the atomistic scale (e.g. due to the packing of the molecules at a flat substrate, etc), our MD
simulations of a coarse-grained model of short flexible polymer chains in principle include
all such effects and hence can provide a check on to what extent the macroscopic theory still
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can account for such phenomena at the nanoscale. As expected on general grounds [21], we
have found that the transitions between various droplet morphologies are rather gradual on the
nanoscale; no evidence for a sharp first-order-like phase transition with associated hysteresis
was seen. Of course, such sharp phase transitions in nanoscopically small systems are rounded
off by finite-size effects, but apart from this lack of sharp morphological phase transitions in
the droplet shapes we find that the macroscopic theory still is rather useful for a qualitative
understanding of the observed equilibrium behaviour.

We have also reported some first observations on the kinetics of thin film rupture through
the nucleation and growth of holes in ultrathin polymer films held as free standing objects
between two lyophilic stripes at two surfaces a distance L apart. Due to the inhomogeneous
structure of such films (their thickness near the walls exceeds the film thickness W (z = L/2)

at film mid-height distinctly), a description of the kinetics of rupture in such films clearly is
difficult, and not attempted in our work (and we are not aware of theoretical work of other groups
dealing with this problem). Thus providing a theoretical understanding of our observations,
namely a first stage of hole growth where the hole radius varies linearly with time, followed
by a second much slower stage where the remaining liquid bridge with roughly circular cross
section gets thinner and thinner, and the accompanying changes of the film thickness, figure 7,
remains a challenge for the future.

Of course, the present modelling can be viewed as a modest first step only, and many
interesting aspects had to be disregarded. Thus, our coarse-grained polymer model disregards
effects of chain stiffness, and even on a coarse-grained level is suitable for neutral polymers
only. Also the substrate was strongly idealized (perfectly flat and ideal, no atomistic corrugation
or mesoscopic roughness, etc). We also emphasize that the choice made to consider very short
chains (N = 20) excludes any effects specific for the dynamics of long polymers (such as
reptation [54]), which may affect the macroscopic growth laws as well. We do hope that the
present work will stimulate both further theoretical and experimental studies of these interesting
problems.
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